NeutroPhase® with Sorbact® Dramatically Enhances the Speed of Wound Healing

NeutroPhase® with Sorbact® appears to accelerate the healing of chronic non-healing wounds in a clinical setting. In this report we examine factors restraining wound healing such as the influence of infections, biofilms, maceration, ischemia, pressure, debridement, and access to appropriate treatment. In particular, biofilm associated with infected wounds can severely delay or inhibit proper wound healing thus contributing to the patient’s morbidity. NeutroPhase, the only pure 100% hypochlorous acid solution, has been reported to be a broad-spectrum, fast-acting, non-toxic antimicrobial and is capable of destroying biofilm associated with infections. Sorbact is a new hydrophobic mesh capable of trapping bacteria, yet prevents maceration of the adjacent skin. In our clinical setting, the combination can be enhanced with negative pressure wound therapy (NPWT) with an irrigation technique of 10 minutes twice daily effectively reducing the bacterial load and impacting bacteria in biofilm. Sorbact acts as an effective fluid transfer for NeutroPhase into the wound without maceration of adjacent skin by residual fluid. We have used this combination on 26 patients without complications in a feasibility case study and feel there is a significant improvement in wound healing of all wounds (including biological graft placement) with or without NPWT.

Chronic non-healing wounds have many factors contributing to the impairment of healing such as the presence of foreign bodies, tissue maceration, ischemia, infection, and biofilms. The clinical picture can be further complicated by systemic factors such as diabetes, malnutrition, renal disease, and advanced age. Therefore, chronic non-healing wounds are a clinical problem that for some is a serious unmet medical need. NeutroPhase® with Sorbact® appears to accelerate the healing of chronic non-healing wounds in a clinical setting. In this report we examine factors restraining wound healing such as the influence of infections, biofilms, maceration, ischemia, pressure, debridement, and access to appropriate treatment. In particular, biofilm associated with infected wounds can severely delay or inhibit proper wound healing thus contributing to the patient’s morbidity. NeutroPhase, the only pure 100% hypochlorous acid solution, has been reported to be a broad-spectrum, fast-acting, non-toxic antimicrobial and is capable of destroying biofilm associated with infections. Sorbact is a new hydrophobic mesh capable of trapping bacteria, yet prevents maceration of the adjacent skin. In our clinical setting, the combination can be enhanced with negative pressure wound therapy (NPWT) with an irrigation technique of 10 minutes twice daily effectively reducing the bacterial load and impacting bacteria in biofilm. Sorbact acts as an effective fluid transfer for NeutroPhase into the wound without maceration of adjacent skin by residual fluid. We have used this combination on 26 patients without complications in a feasibility case study and feel there is a significant improvement in wound healing of all wounds (including biological graft placement) with or without NPWT.

Introduction

Chronic non-healing wounds have many factors contributing to the impairment of healing such as the presence of foreign bodies, tissue maceration, ischemia, infection, and biofilms. The clinical picture can be further complicated by systemic factors such as diabetes, malnutrition, renal disease, and advanced age. Therefore, chronic non-healing wounds are a clinical problem that for some is a serious unmet medical need. NeutroPhase® with Sorbact® appears to accelerate the healing of chronic non-healing wounds in a clinical setting. In this report we examine factors restraining wound healing such as the influence of infections, biofilms, maceration, ischemia, pressure, debridement, and access to appropriate treatment. In particular, biofilm associated with infected wounds can severely delay or inhibit proper wound healing thus contributing to the patient’s morbidity. NeutroPhase, the only pure 100% hypochlorous acid solution, has been reported to be a broad-spectrum, fast-acting, non-toxic antimicrobial and is capable of destroying biofilm associated with infections. Sorbact is a new hydrophobic mesh capable of trapping bacteria, yet prevents maceration of the adjacent skin. In our clinical setting, the combination can be enhanced with negative pressure wound therapy (NPWT) with an irrigation technique of 10 minutes twice daily effectively reducing the bacterial load and impacting bacteria in biofilm. Sorbact acts as an effective fluid transfer for NeutroPhase into the wound without maceration of adjacent skin by residual fluid. We have used this combination on 26 patients without complications in a feasibility case study and feel there is a significant improvement in wound healing of all wounds (including biological graft placement) with or without NPWT.

Materials & Methods

A combination of 0.01% NeutroPhase as the antibacterial irrigation and Sorbact® (Abigo Medical AB, Åskom, Sweden) as the wound mesh dressing was used to treat 26 patients with chronic non-healing wounds. Before treatment, the wound area was cleaned and the wound was debrided, then the skin was dried. Then Sorbact mesh was sized and placed into the wound. A Blake drain was placed on and in the Sorbact mesh. The adhesive drape was attached and placed over the entire area including the Sorbact mesh. The area around the tubing was sealed with Stomahesive. The tubing was connected to a three-way stopcock and a one-way valve was added. The VAC was then turned on and adjusted from 50 mm to 125 mm suction. The pre-determined amount of NeutroPhase was injected through the tubing was sealed with Stomahesive. The tubing was connected to a three-way stopcock and allowed to stay in the wound for 15 minutes before it was evacuated. This was subsequently changed to a separate inflow tube (Blake drain) and irrigation while the VAC was kept on.

Abstract

NeutroPhase® with Sorbact® appears to accelerate the healing of chronic non-healing wounds in a clinical setting. In this report we examine factors restraining wound healing such as the influence of infections, biofilms, maceration, ischemia, pressure, debridement, and access to appropriate treatment. In particular, biofilm associated with infected wounds can severely delay or inhibit proper wound healing thus contributing to the patient’s morbidity. NeutroPhase, the only pure 100% hypochlorous acid solution, has been reported to be a broad-spectrum, fast-acting, non-toxic antimicrobial and is capable of destroying biofilm associated with infections. Sorbact is a new hydrophobic mesh capable of trapping bacteria, yet prevents maceration of the adjacent skin. In our clinical setting, the combination can be enhanced with negative pressure wound therapy (NPWT) with an irrigation technique of 10 minutes twice daily effectively reducing the bacterial load and impacting bacteria in biofilm. Sorbact acts as an effective fluid transfer for NeutroPhase into the wound without maceration of adjacent skin by residual fluid. We have used this combination on 26 patients without complications in a feasibility case study and feel there is a significant improvement in wound healing of all wounds (including biological graft placement) with or without NPWT.

Discussion

Chronic non-healing wounds have many factors contributing to the impairment of healing such as the influence of infections, biofilms, maceration, ischemia, pressure, debridement, and access to appropriate treatment. In particular, biofilm associated with infected wounds can severely delay or inhibit proper wound healing thus contributing to the patient’s morbidity. NeutroPhase, the only pure 100% hypochlorous acid solution, has been reported to be a broad-spectrum, fast-acting, non-toxic antimicrobial and is capable of destroying biofilm associated with infections. Sorbact is a new hydrophobic mesh capable of trapping bacteria, yet prevents maceration of the adjacent skin. In our clinical setting, the combination can be enhanced with negative pressure wound therapy (NPWT) with an irrigation technique of 10 minutes twice daily effectively reducing the bacterial load and impacting bacteria in biofilm. Sorbact acts as an effective fluid transfer for NeutroPhase into the wound without maceration of adjacent skin by residual fluid. We have used this combination on 26 patients without complications in a feasibility case study and feel there is a significant improvement in wound healing of all wounds (including biological graft placement) with or without NPWT.

Results

The results demonstrate that NeutroPhase safely destroys biofilm in the wound and is an effective topical antimicrobial which improves wound healing.

Conclusions

• The results demonstrate that NeutroPhase safely destroys biofilm in the wound and is an effective topical antimicrobial which improves wound healing.
• Sorbact helps reduce tissue maceration.
• NeutroPhase in combination with Sorbact as the wound mesh dressing utilizing negative pressure wound therapy dramatically enhances the speed of wound healing.
• These case studies show NeutroPhase® in combination with Sorbact® has the potential to be a very effective wound care product for use in wound healing.

References